A distributed primal-dual algorithm for computation of generalized Nash equilibria with shared affine coupling constraints via operator splitting methods

نویسندگان

  • Peng Yi
  • Lacra Pavel
چکیده

In this paper, we propose a distributed primal-dual algorithm for computation of a generalized Nash equilibrium (GNE) in noncooperative games over network systems. In the considered game, not only each player’s local objective function depends on other players’ decisions, but also the feasible decision sets of all the players are coupled together with a globally shared affine inequality constraint. Adopting the variational GNE, that is the solution of a variational inequality, as a refinement of GNE, we introduce a primal-dual algorithm that players can use to seek it in a distributed manner. Each player only needs to know its local objective function, local feasible set, and a local block of the affine constraint. Meanwhile, each player only needs to observe the decisions on which its local objective function explicitly depends through the interference graph and share information related to multipliers with its neighbors through a multiplier graph. Through a primal-dual analysis and an augmentation of variables, we reformulate the problem as finding the zeros of a sum of monotone operators. Our distributed primal-dual algorithm is based on forward-backward operator splitting methods. We prove its convergence to the variational GNE for fixed step-sizes under some mild assumptions. Then a distributed algorithm with inertia is also introduced and analyzed for variational GNE seeking. Finally, numerical simulations for network Cournot competition are given to illustrate the algorithm efficiency and performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projected-gradient algorithms for generalized equilibrium seeking in Aggregative Games are preconditioned Forward-Backward methods

We show that projected-gradient methods for the distributed computation of generalized Nash equilibria in aggregative games are preconditioned forward-backward splitting methods applied to the KKT operator of the game. Specifically, we adopt the preconditioned forward-backward design, recently conceived by Yi and Pavel in the manuscript “A distributed primal-dual algorithm for computation of ge...

متن کامل

A Douglas-Rachford splitting for semi-decentralized generalized Nash equilibrium seeking in Monotone Aggregative Games

We address the generalized Nash equilibrium seeking problem for noncooperative agents playing non-strictly monotone aggregative games with affine coupling constraints. First, we use operator theory to characterize the generalized Nash equilibria of the game as the zeros of a monotone setvalued operator. Then, we massage the Douglas–Rachford splitting to solve the monotone inclusion problem and ...

متن کامل

Strategic behavior in power markets under uncertainty

We consider a setting of a two settlement power market where firms compete in the forward market and an uncertain real-time market. A recourse-based framework is proposed where firms make simultaneous bids in the forward market and take recourse in the real-time market contingent on the realization of uncertainty. The market participants include both generation firms as well as the independent ...

متن کامل

Primal-Dual Decomposition by Operator Splitting and Applications to Image Deblurring

We present primal-dual decomposition algorithms for convex optimization problems with cost functions f(x) + g(Ax), where f and g have inexpensive proximal operators and A can be decomposed as a sum of two structured matrices. The methods are based on the Douglas–Rachford splitting algorithm applied to various splittings of the primal-dual optimality conditions. We discuss applications to image ...

متن کامل

Monotone operator methods for Nash equilibria in non-potential games

We observe that a significant class of Nash equilibrium problems in non-potential games can be associated with monotone inclusion problems. We propose splitting techniques to solve such problems and establish their convergence. Applications to generalized Nash equilibria, zero-sum games, and cyclic proximation problems are demonstrated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.05388  شماره 

صفحات  -

تاریخ انتشار 2017